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ABSTRACT

Fungi dominate the microbial biomass of temperate forest soils and are a key driver of ecosystem
nutrient cycling. Chronic nitrogen (N) amendments frequently cause the accumulation of soil organic
matter within soils, suggesting that elevated N disrupts decomposition by altering fungal communities.
To link previously observed increases in soil organic matter with potential changes in the fungal com-
munity, we assessed the effects of soil N amendment on fungal community structure at a long-term N
addition experiment at Harvard Forest (Petersham, MA, USA). A decline in the relative abundance of
ectomycorrhizal fungi following long-term N addition was offset by an increase in the relative abundance
of saprotrophs. Species richness and diversity of ectomycorrhizal fungi declined, while ascomycetes and
saprotrophs responded positively to N enrichment. However, nitrophilic species included ectomycor-
rhizal as well as saprotrophic fungi, especially the ectomycorrhizal Russula vinacea, whose relative
abundance increased from 10 to 37% of the entire community across N treatments. Two decades of soil N
enrichment appears to have fundamentally altered the soil fungal community of this temperate forest.
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1. Introduction

Soil fungi play key roles in ecosystem C and N cycles, as de-
composers of organic matter and symbionts of plants. Fungi are the
primary producers of the extracellular enzymes that break down
lignin and cellulose (Schneider et al., 2012), two of the most
abundant compounds in plant biomass (Dix and Webster, 1995; de
Boer et al., 2005). However, fungi vary considerably in their
decomposition capacities. For example, some species can fully
decompose lignin, while others can only partially decompose this
polymer (Fernandez-Fueyo et al., 2012). Production of the multiple
enzymes involved in cellulose decay also varies among fungal
species. An environmental disturbance that selectively impacts
particular groups of fungi may influence the concentrations and
chemical structure of lignin and other key plant constituents, and
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ultimately shape rates of soil C cycling (Filley et al., 2002; Grandy
et al., 2008). This is especially the case in the organic horizon of
temperate forest soils where lignin is a dominant constituent
whose presence limits plant litter decomposition.

Our research focuses on fungal responses to atmospheric ni-
trogen (N) deposition, a significant global change stressor in many
parts of the world. Nitrogen deposition causes the inadvertent
fertilization of historically N-limited ecosystems and has the po-
tential to saturate biotic demand for N, causing a cascade of effects,
including nitrate leaching to groundwater, enhanced trace gas
emissions to the atmosphere, shifts in plant community structure,
altered ecosystem carbon (C) storage, nutrient imbalances, and
overall ecosystem decline. On a global basis, atmospheric N depo-
sition has more than doubled over the last 150 years, from
approximately 34 Tg N yr—! in 1860 to >100 Tg N yr~! currently
(Galloway et al., 2008). Nitrogen deposition is predicted to reach
global levels of 200 Tg N yr~! by 2050, with some areas of the world
expected to receive N deposition rates exceeding
30-50 kg N ha~! yr! (Galloway et al., 2008). Even now, parts of
Western Europe experience rates of N deposition as high as
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25—50 kg N ha~! yr—! (total wet and dry deposition; Holland et al.,
2005); these rates are likely to characterize parts of Asia as well.

In temperate forest ecosystems, long-term N deposition often
results in significant accumulation of soil organic matter (Pregitzer
etal., 2008; Zak et al., 2008, 2011; Janssens et al., 2010; Lovett et al.,
2013; Frey et al., 2014). While the exact mechanisms causing soil C
accumulation remain unclear, increasing evidence suggests this
accumulation is tied to the suppression of organic matter decom-
position, rather than to an enhancement of plant Cinputs (Zak et al.,
2008, 2011; Frey et al., 2014). Observed soil C accumulation is often
associated with reduced total soil fungal biomass (e.g., Frey et al.,
2004, 2014; Wallenstein et al., 2006), decreased ligninolytic
enzyme activity (e.g., Deforest et al.,, 2004; Frey et al., 2004;
Hofmockel et al., 2007; Zak et al., 2008), and, in some cases, the
down-regulation of fungal ligninolytic gene expression (Edwards
et al., 2011; Hesse et al., 2015).

Research on soil N enrichment and fungal community structure
typically focuses on specific subsets of fungi, for example, mycor-
rhizal sporocarps or root tips (Arnolds, 1991; Dighton and Jansen,
1991; Egerton-Warburton and Allen, 2000; Lilleskov et al., 2001,
2002; Treseder, 2004; Parrent and Vilgalys, 2007; van Diepen et al.,
2011), saprotrophic taxa (Allison et al, 2007), or lignin-
decomposing basidiomycetes (Blackwood et al., 2007; Hofmockel
et al., 2007; Hassett et al., 2009; Lauber et al., 2009; Entwistle
et al., 2013). More holistic research has targeted short-term fertil-
ization regimes (<5 years; Weber et al., 2013; Mueller et al., 2014),
or favors descriptions of entire communities and phyla over dis-
cussions of species (Hesse et al., 2015). Moreover, research often
involves low sequencing depths, unlikely to comprehensively
describe changes in entire soil fungal communities. Because re-
sponses measured in the early years of global change experiments
can change significantly or reverse over time (e.g., Melillo et al,,
2002; Janssens et al., 2010), and because species within a phylum
may have different autecologies (Wolfe et al., 2012), it is critical to
describe the long-term effects of environmental change manipu-
lations at multiple levels of the taxonomic hierarchy.

We sought to comprehensively describe the fungal community
in the organic soil horizon of a temperate deciduous forest exposed
to long-term simulated N deposition. We conducted our work at
the Harvard Forest Long Term Ecological Research (LTER) site in
Petersham, MA, USA where the Chronic Nitrogen Amendment
Study was established more than 25 years ago to explore effects of
N deposition on local habitats (Aber et al., 1989). By performing a
deep sequencing analysis of the entire fungal community, we were
able to examine the effect of long-term N additions on the fungal
community at different taxonomic levels (phylum, genus, OTU),
and on multiple, key functional groups (saprotrophs, ectomycor-
rhizal fungi).

2. Materials and methods
2.1. Experimental design and sampling

The Chronic Nitrogen Amendment Study was established in
1988 in a mixed hardwood stand composed primarily of black and
red oak (Quercus velutina and Quercus rubra). Soils are Typic Dys-
trudepts of the Gloucester series (Peterjohn et al., 1994) with no
significant variation amongst the N treatments in pH or concen-
trations of the base cations Ca and Mg (Turlapati et al., 2012). Three
30 x 30 m plots receive one of three N treatments: no N addition
(NO); 50 kg N ha~! yr—' (N50), a level of N deposition found in parts
of Europe and Asia (Vet et al., 2014) and predicted for many parts of
the world by 2050 (Galloway et al., 2008); or 150 kg N ha~ ! yr™!
(N150), a treatment designed to push the system towards N satu-
ration and serve as a space-for-time substitution, enabling

explorations of a high N ecosystem (J. Aber, personal communica-
tion). Although the experiment is sometimes criticized as pseu-
doreplicated, previous work at the site has confirmed clear
treatment differences among plots not caused by random variation
(Aber and Magill, 2004; Frey et al., 2014). Moreover, the choice to
create fewer, very large plots encompassing multiple entire trees,
including root systems, may be an asset to explorations of the
fungal community, as larger plots may be more likely to encompass
entire communities of multiple fungal individuals (Douhan et al.,
2011). The rate of ambient N deposition at Harvard Forest was
estimated as 8—10 kg N ha~! yr~! in 2010, down somewhat from
the 10—15 kg N ha~! yr~! estimated in the early 2000s (Schwede
and Lear, 2014). The N-fertilized plots are treated with an
aqueous solution of ammonium nitrate applied monthly during the
growing season (Aber et al.,, 1989). Water added from fertilizer
additions is equal to approximately 0.5% of mean annual precipi-
tation at the site. Each treatment plot is divided into 36,5 x 5 m
subplots.

We collected four soil samples (2.5 cm diameter) from the
organic soil horizon (O, and O, layers) in each of three randomly
chosen subplots within each of the three N treatment plots. Edge
subplots were avoided. Samples were combined into one com-
posite sample per subplot, resulting in three replicates per treat-
ment. Samples were taken to the University of New Hampshire on
ice and then homogenized by passing through a 2-mm sieve ster-
ilized with ethanol. Fine roots (<2 mm) were removed from sieved
soils using forceps. Soils were flash frozen in liquid N and stored
at —80 °C within 6 h of sampling.

2.2. DNA extraction, amplification and 454-pyrosequencing

Our aim was to generate robust descriptions of fungal diversity
and community composition across plots and so we deeply
sequenced three loci. First we sequenced the internal transcribed
spacer (ITS) region, designated as a barcode for fungi (Schoch and
Seifert, 2012). Because sequencing of either ITS1 or ITS2 alone can
give different estimates of community composition (Mello et al.,
2011; Bazzicalupo et al., 2012), we amplified both loci, each inde-
pendently, using primers anchored in either the 18s and 5.8s (ITS1)
or 5.8s and 28s (ITS2). We next sequenced the large subunit (LSU) of
basidiomycetes, because basidiomycetes are the primary de-
composers of lignin, and lignin is accumulating in the N-enriched
soils at our site (Frey et al., 2014). We targeted the LSU because this
locus is amenable to analyses involving phylogenetic approaches
(e.g. UniFrac; Lozupone and Knight, 2005); whereas, the ITS regions
are not (Lindahl et al., 2013), and so the LSU provides information
complementary to ITS-based analyses.

DNA was extracted from 0.75 g of soil with MoBio Powersoil
RNA/DNA co-isolation kits (MoBio 12866-25,12867-25) and puri-
fied (MoBio 12877-50). PCR amplification of the ITS1 and ITS2 re-
gions of fungal rDNA and the LSU D2-D3 region of basidiomycete
rDNA was performed with primer pairs ITS1f-5.8s (Vilgalys and
Hester, 1990; Gardes and Bruns, 1993), 5.8sr-ITS4 (Vilgalys and
Hester, 1990; White et al., 1990), and LR21r-LR5f (Hopple and
Vilgalys, 1994; Tedersoo et al., 2008), which were combined with
MID tags and 454 sequencing primers (see Table S1, Supplementary
Information for full primer sequences).

High-fidelity Phusion Polymerase (New England Biolabs
MO0530) and 27 PCR cycles were used to minimize errors and
primer bias (see Appendix S1, Supplementary Information for full
PCR protocol). An equimolar amplicon library was submitted for
Roche 454 sequencing in two 1/8th plate reactions at the Roy J.
Carver Biotechnology Center at University of Illinois with all sam-
ples sequenced in each sequencing reaction.
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2.3. Sequence processing and taxonomic and functional
identification

Sequences were filtered for quality and demultiplexed using
AmpliconNoise (Quince et al., 2011). AmpliconNoise was chosen
after comparison with alternative denoising methods (Appendix
S2, Supplementary Information; also see Gaspar and Thomas,
2013). Remaining ITS1 and ITS2 sequences were clustered into
operational taxonomic units (OTUs) at 95% sequence similarity,
while LSU sequences were clustered at 97% sequence similarity,
using UCLUST (Edgar, 2010). We chose a 95% sequence similarity
cutoff for the ITS regions to avoid over-splitting data due to
sequencing errors (Jumpponen et al., 2010; Tedersoo et al., 2010)
and a 97% cutoff for the LSU because this region is more conserved
than either ITS region, requiring a more stringent clustering
threshold (Koljalg et al., 2005). The most abundant sequence in
each cluster was chosen as a representative sequence. Chimeras
were removed using de novo UCHIME (Edgar, 2010) and Perl
v5.12.4. Singleton OTUs were removed, because singleton elimi-
nation is accepted as the more conservative approach to describing
fungal communities (Tedersoo et al.,, 2010). However, trends in
diversity and community composition were the same or similar
whether singletons were retained or removed (Table S2,
Supplementary Information). Samples were rarefied to 820, 345,
and 280 sequences, representing the minimum number of reads
across samples for the ITS1, ITS2, and LSU loci, respectively. All
sequence processing and subsequent analyses were performed in
QIIME (Caporaso et al., 2010) unless otherwise noted.

Taxonomy was assigned by comparing representative se-
quences to the NCBI nt database using the BLASTn algorithm, and
consensus taxonomies were generated at the genus level using
MEGAN (Huson et al., 2011) with minimum support of 3, top 5% of
matches, and all other parameters set to default (see MEGAN user
manual for a description of these settings). Non-fungal sequences
were manually removed. In order to identify the most abundant
OTUs in the ITS1 and ITS2 datasets with more certainty, we
compared sequences to voucher specimens in the NCBI nt data-
base. The most abundant OTU in the ITS1 dataset represented
29.5% of sequences overall, while the most abundant OTU in the
ITS2 dataset represented 20.3% of sequences. Genus level taxo-
nomic assignments from MEGAN were checked by manual in-
spection of BLASTn search results for those OTUs with greater than
1% relative abundance. Moreover, whenever possible, we
confirmed identification of OTUs by comparing the representative
sequences to sequences derived from ectomycorrhizal root tips or
cultures collected from our site (for details see Appendix S3,
Supplementary Information). Genus level taxonomic assignments
from MEGAN were accurate in greater than 95% of the 43 total
OTUs checked in this way, including the most abundant OTU in the
dataset.

Generic identifications enabled us to classify OTUs into broad
functional groups, for example as saprotrophs, ectomycorrhizal
fungi, or pathogens (sensu Tedersoo et al.,, 2014; see Table S3,
Supplementary Information for functional classifications). While
the functional roles of many fungi are poorly described, especially
the functions of uncultured fungi, the approach we adopt is
demonstrated as useful for the interpretation of taxonomic data
(for example see Parrent and Vilgalys, 2007; Talbot et al., 2013;
Voiiskova et al., 2013; Stursova et al., 2014; Talbot et al., 2014;
Tedersoo et al., 2014). Assignments were checked manually for
accuracy. In cases where a genus can take more than one functional
role, we assigned the primary function given by Tedersoo et al.
(2014), but discuss alternative roles for those genera found to
respond significantly to N enrichment.

2.4. Relative abundances of genera and functional groups

Relative abundances estimated from the sequencing of envi-
ronmental DNA may not match relative abundances estimated by
counting individuals, or measuring biomass, because of interspe-
cific variation in ITS copy numbers and differences in PCR ampli-
fication efficiencies. However, comparisons of relative abundance
generated from molecular data are informative when comparisons
are made for a particular species across samples (e.g. Amend et al.,
2010; Thrmark et al., 2012) and provide ecological data not found in
analyses of presence-absence data. Moreover, we have evidence
that the relative abundances of ectomycorrhizal genera generated
by our sequencing experiment are highly correlated with relative
abundances as measured by counting the colonized root tips at our
site (Fig. 1). To confirm our relative abundance estimates as robust,
we compared the molecular data to root tip data. We calculated an
average relative abundance for each ectomycorrhizal genus by
treatment. We then used linear regression to compare these data to
the average relative abundance of ectomycorrhizal genera colo-
nizing root tips. Root tip colonization data were generated for a
separate PhD thesis (by JJS) by sequencing ectomycorrhizal fungi on
individual root tips (methods for root tip collection and sequencing
are given in Appendix S4).

Next, we more fully explored the changes in relative abundance
as measured by sequencing. In these analyses we included genera
detected by at least one ITS locus at >1% relative abundance, on
average, across the three samples of a treatment. Genera below this
threshold were excluded because quantitative comparisons of taxa
with low read abundances are likely to be unreliable (Lundberg
et al., 2012; Smith and Peay, 2014). Relative abundance data for
various genera were generated by summing the relative abundance
of each OTU within a specific genus in each sample. We also
compared the relative abundance of the most abundant OTUs in the
ITS1 and ITS2 datasets, and functional groups representing >2%
relative abundance, on average, across loci and treatments.

Tests of the relative abundances of genera and functional groups

y=1.19x - 1.32
- 2_
4 R?=0.73, P <0.0001 Ru rul]

Soil (In % relative abundance + 1)

Co
11 0O
‘ Am H Control
2 O [ N50
[IN150

2 3
ECM roots (In % relative abundance + 1)

Fig. 1. Relative abundance of ectomycorrhizal (ECM) genera as measured by
sequencing individual ECM root tips compared to relative abundance of ECM genera as
measured by 454 sequencing of whole soil. Abbreviations: control (ambient N depo-
sition); N50 (50 kg N ha~! yr~'); N150 (150 kg N ha~! yr'); Am (Amanita); Ce
(Cenococcum); Co (Cortinarius); La (Lactarius); Ru (Russula); Sc (Scleroderma); Th
(Thelephora and Tomentella). The gray band is the 95% confidence interval.
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were based on linear mixed-effects models in R 2.15.2 Ime4 (Bates
et al,, 2012; R Core Team, 2012) with locus, subplot, or both as
random effects, depending on the goodness of fit of full versus
reduced models, and with N treatment as a fixed effect. Residuals
were visually examined for normality and homoscedasticity. When
these assumptions were violated, data were log or square-root
transformed. Type [ error was controlled using the Benjamini and
Hochberg FDR procedure (Verhoeven et al., 2005). We used a similar
linear mixed-effects model procedure to test for effects of N on the
relative abundance of functional groups, but allowed for heteroge-
neous variance using the function Ime in R 2.15.4 nlme (Pinheiro et al.,
2014). Significant differences between means were determined using
the Satterthwaite approximation and Tukey tests in R ImerTest and
multcomp (Hothorn et al., 2013; Kuznetsova et al., 2013).

2.5. Community diversity and composition

To compare alpha diversity across plots, we calculated the
Shannon diversity, Simpson's diversity, and OTU richness of each
ITS locus for each of the three samples from each N treatment. Next,
to document N effects on the species richness and diversity of as-
comycetes, basidiomycetes, ectomycorrhizal fungi, and sapro-
trophs, respectively, the same alpha diversity metrics were
calculated for each phylum and functional group individually. Dif-
ferences in alpha diversity were compared using linear models fit
by generalized least squares (Pinheiro et al., 2014), and significant
differences were assessed using Tukey tests in R 2.15.4 nlme,
because these tests allow for a heteroscedastic variance structure.

To compare community composition we calculated Bray-Curtis
distances using presence-absence of ITS OTUs. This approach ig-
nores the phylogenetic distances between ITS OTUs because the ITS
regions are difficult to align across deeply divergent lineages
(Lindahl et al., 2013). However, including a measure of phylogenetic
distance may be useful to the extent that functional differences
between fungi correlate with phylogenetic distance. Towards that
end we calculated a phylogenetically based community composi-
tion distance metric, the unweighted UniFrac (Lozupone and
Knight, 2005), using the basidiomycete LSU data. This metric
gives an indication of the branch length that is unique to a sample
relative to other samples, and provides pairwise sample distances
as a proportion, similar to classical distance metrics. Unweighted
UniFrac (Lozupone and Knight, 2005) was calculated for the LSU
region using a neighbor-joining tree constructed in ClustalW 2.1
(Larkin et al., 2007), with Saccharomyces cerevisiae sequence RDN25
(www.yeastgenome.org) as the outgroup.

Statistically significant differences in community composition
were determined by adonis in the R vegan package (Oksanen et al.,
2013) and by Monte-Carlo simulations (Caporaso et al., 2010).
Principal coordinates and Procrustes analyses were used to visu-
alize differences across plots. To determine whether ITS1 and ITS2
provided similar estimates of community composition we tested
the correlation between ITS1 and ITS2 Bray-Curtis distance esti-
mates with Mantel tests (Caporaso et al., 2010). To aid in inter-
pretation of the LSU unweighted UniFrac, we regressed family level
relative abundance from the LSU data against the principal coor-
dinate axes using the envfit function in the R vegan package, and
plotted those families that had significant correlations.

3. Results

3.1. Sequence processing and taxonomic and functional
identifications

Following denoising, quality control, and the removal of chi-
meras and non-fungal sequences, we obtained 16,150 ITS1

sequences, 8,164 ITS2 sequences, and 11,681 LSU sequences (see
Appendix S5, Supplementary Information for details on the filtered,
low-quality sequences). We generated an average of 1794, 907, and
1298 sequences per sample (9 samples = 3 N treatments x 3 plots
per treatment) for the ITS1, ITS2, and LSU, respectively. Clustering at
a 95% (ITS) or 97% (LSU) similarity threshold resulted in a total of
575, 485, and 155 OTUs for the ITS1, ITS2, and LSU, respectively,
with 0.4—12% of sequences forming singleton OTUs. The number of
non-singleton OTUs used in final analyses totaled 351, 313, and 100
for the ITS1, ITS2, and LSU, respectively.

High-throughput bioinformatics, particularly denoising (Gaspar
and Thomas, 2013), sequence clustering (Nilsson et al., 2008, 2011),
and the subsequent choice of a representative sequence used as a
comparison with public databases, may cause one of several minor
variants to be chosen as the true sequence. By comparing our se-
quences to sequences obtained from ectomycorrhizal root tips or
fungal cultures isolated from the same treatment plots, we
confirmed the identification of 58 OTUs, including OTUs from three
genera subsequently identified as increasing in relative abundance
with added N.

The ITS1 and ITS2 markers provided similar results, as regards to
the broad effects of N fertilization on fungal community composi-
tion (Table S4, S5), but the two markers gave different estimates of
relative abundance of different taxa (Table S3), confirming the
utility of using multiple loci to describe fungal communities (Mello
etal., 2011; Monard et al., 2012). The ITS1 locus was biased towards
detection of basidiomycetes, and the ITS2 was biased towards
ascomycetes—81% of sequences detected by ITS1 were identified as
basidiomycetes versus 55% for ITS2 (ANOVA P < 0.001), while 38% of
ITS2 sequences were identified as ascomycetes versus 15% for ITS1
(ANOVA P < 0.001).

The total number of 664 OTUs we identified using ITS1 and ITS2
sorted into 158 fungal genera or groups (clusters of OTUs that could
not be assigned to a genus with confidence are named as groups).
Thirty-one genera or groups were unique to ITS1, 77 to ITS2, and 50
genera or groups were found using both loci. A complete list of
genera and their functional classifications is provided in the
Supplementary Information (Table S3). In terms of sequence
abundance, 19 genera or groups, each representing >1% relative
sequence abundance when averaged across N treatments,
comprised 80% of the total sequences (highlighted in Table S3,
Supplementary Information). Of the 158 genera/groups identified,
18 were classified as ectomycorrhizal (21% of all identified OTUs),
74 as saprotrophic (49% of all OTUs), and 29 as plant pathogenic
(12% of OTUs). We were able to assign 87% of genera to a specific
ecological role, which translates to 89% of OTUs and 68% of se-
quences (Table S3, Supplementary Information).

3.2. Comparing relative abundances of 454 sequences and root tips

The relative abundances of ectomycorrhizal fungi in the organic
horizon detected by 454 sequencing were highly correlated with
relative abundances detected by Sanger sequencing of ectomycor-
rhizal root tips collected in the field from the same plots (Fig. 1;
R% = 0.73, P < 0.0001), suggesting our sequencing of environmental
samples provides an accurate description of species’ abundances in
soil.

3.3. Changes in the relative abundances of different phyla and
functional groups

Basidiomycetes dominated the fungal community in all treat-
ment plots, ranging from 63 to 71% of relative sequence abundance
across the N treatment gradient (Fig. 2A). Ascomycetes averaged
26% across treatments. Other phyla (Chytridiomycota,
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Mucoromycotina, Neocallimastigomycota) each made up <5% of
identified sequences. Sequences that had no match in the NCBI
database represented <2% of the total. Members of the orders
Russulales (45%) and Agaricales (14%) were the most abundant
across the treatment plots.

There were no significant N treatment differences in relative
abundance of ascomycetes or basidiomycetes (Fig. 2A). However,
the relative abundances of broad functional groups (sensu Tedersoo
et al.,, 2014) did change significantly across the N addition treat-
ments (Fig. 2B). Ectomycorrhizal fungi were dominant in all N
treatments, representing 59—72% of all sequences, a finding typical
for the organic horizon of forest soils (Baldrian et al., 2012; Weber
et al., 2013; Talbot et al., 2014). However, their relative abundance
declined from 72% in the control treatment to 62% and 59%, in the
N50 and N150 treatments, respectively. In contrast, the relative
abundance of saprotrophic fungi increased significantly, changing
from only 18% of total sequences in the control treatment to 28% in
the highest N addition treatment (Fig. 2B). Saprotrophic basidio-
mycetes, a subset of the total saprotrophic functional group, also
increased in relative abundance under N enrichment, resulting in
no apparent change in basidiomycete relative abundances (Fig. 2A).
Plant pathogens made up 1—-3% of sequences in the control and N50
treatments and increased to 5% of sequences in the N150 treatment
(Table S3, Supplementary Information).

3.4. The discovery of nitrophilic organisms

The ectomycorrhizal genus Russula made up 40—50% of se-
quences across N treatments (Fig. 3). The ectomycorrhizal genus
Cortinarius was the second most abundant genus (6% abundance on
average across N treatments), with remaining genera comprising
<5% of total sequence abundance. Eight genera, representing 16% of
all OTUs, underwent significant changes in relative abundance in
response to N addition (Table 1). The ectomycorrhizal genus Cen-
ococcum declined significantly with N fertilization, while
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Fig. 3. Relative sequence abundance of Russula calculated for the entire genus (total
Russula), for R. vinacea on its own, and for all OTUs of Russula but without R. vinacea
(other Russula). Relative abundances are average estimates from ITS1 and ITS2. Error
bars are standard errors. Different letters denote significant differences within a group
across N addition treatments.

Scleroderma and Rhizoscyphus increased. Three saprotrophic taxa,
all ascomycetes, also increased under the highest N addition:
Hypocrea, Phialophora, Trichophyton.

While there were no significant treatment differences in
sequence abundance for the genus Russula as a whole (Fig. 3), the
most abundant OTU in our dataset, identified as Russula vinacea,
increased from 10% relative abundance in the control treatment to
28—37% in the N-fertilized plots. This was the largest change
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Fig. 2. Relative sequence abundance of (A) fungal phyla and (B) broad functional groups (ectomycorrhizal or saprotrophic fungi). Relative abundances are an average of estimates
from ITS1 and ITS2 to account for differences in detection of fungal taxa between the loci. Error bars are standard errors. Different letters denote significant differences within a
functional group across N addition treatments. The phyla Chytridiomycota and Neocallimastigomycota were detected in the N150 treatment at 0.06% and 0.04% of relative sequence

abundance, respectively, and were not detected in the control or N50 treatments.
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Table 1

Fungal genera showing significant differences in relative abundance in response to chronic N addition. ‘Control’, ‘N50’, and ‘N150’ represent the N addition level (0, 50, or
150 kg N ha~! yr™1). Values followed by different letters within a genus are significantly different. Standard errors are presented in parentheses. Ecological information is
derived from Alexopoulus et al. (2002), Cairney and Chambers (1999), Cannon and Kirk (2007), and listed references.

Phylum Genus Relative abundance (%) Ecological summary
Control N50 N150

Ascomycota Cenococcum 6.6 (3.5)* 3.6 (1.9 0.3 (0.3)° Ectomycorrhizal; broad host range; cosmopolitan distribution
(Jany et al., 2002)

Ascomycota Hypocrea 0.6 (0.2)° 0.3 (0.1)° 2.3 (04) Saprotrophic, cellulolytic; cosmopolitan distribution (Liu et al.,
2012)

Ascomycota Phialophora 0.2 (0.1)° 0.2 (0.1)° 1.5 (0.7)? Saprotrophic or biotrophic, cellulolytic, xylanolytic, proteolytic;
commonly associated with roots, cosmopolitan distribution
(Caldwell et al., 2000)

Ascomycota Rhizoscyphus 0.8 (0.6)° 1.0 (0.4)° 2.7 (1.4 Ericoid mycorrhizal; root endophyte or ectomycorrhizal,
proteolytic, cellulolytic, and capable of partial lignin
degradation; cosmopolitan distribution (Read et al., 2004;
Grelet et al.,, 2010)

Ascomycota Trichophyton 0.2 (0.1)° 0.3 (0.2)° 0.9 (0.5)* Saprotrophic in soil, decomposing keratin; dermatophytic

Ascomycota Verticillium 0.2 (0.1)° 0.7 (0.4)*° 1.0 (0.5)* Plant pathogen; parasite of insects or nematodes

Basidiomycota Agaricus 0.5 (0.3)* 4.1 (2.5)? 0.1(0.1)° Saprotrophic, ligninolytic (Bonnen et al., 1994)

Basidiomycota Scleroderma 0.0 (0.0)° 0.2 (0.1)° 23 (1.3)? Broad host range, ectomycorrhizal, may be important in organic

phosphorous acquisition (Antibus et al., 1991)

recorded for any single OTU. This OTU represented 29.5% and 20.3%
of sequences in the ITS1 and ITS2 datasets, respectively, whereas
the second most abundant OTU in these datasets represented 6.3%
and 7.0% of sequences, respectively. Identification of the OTU as
R. vinacea was based on a match to sequences from ectomycorrhizal
root tips, also isolated from our study site (>99% similarity) and a
match to GenBank accession EU598181 (99% sequence similarity)
which was confirmed as R. vinacea by B. Buyck (pers. comm.; ITS1
OTU 691, ITS2 OTU 281 in Table S6, Supplementary Information).
The increased abundance of R. vinacea in N-amended soils appears
to have occurred at the expense of other Russula species, which as a
group declined by more than 50% in response to both levels of N
addition (Fig. 3).

3.5. Community diversity among treatments

Simpson's diversity, a measure of the probability that two
randomly chosen individuals (in our analyses, sequences) represent
different species, averaged 0.84 across treatments, suggesting a
relatively even distribution of species within samples across the
three plots despite the dominance of a single OTU (R. vinacea). The
levels of fungal diversity (Fig. 4) and evenness across plots are
consistent with recent high-throughput sequencing analyses of the
soil fungal community (e.g., Baldrian et al., 2012). There was a
significantly higher taxonomic richness in the highest N treatment
(N150), compared to control and N50 treatments (Fig. 4A). This
overall increase in richness was driven largely by an increased
number of ascomycete OTUs; the number of basidiomycete OTUs
was not different across N treatments. OTU richness of the ecto-
mycorrhizal taxa declined in the highest N treatment (Fig. 4A),
concomitant with a decline in Shannon diversity (Fig. 4B) and
relative sequence abundance (Fig. 2B). As with relative abundances,
the lack of apparent change in basidiomycete diversity and decline
in ectomycorrhizal diversity corresponds to an increase in the di-
versity of saprotrophic basidiomycetes with N addition. The num-
ber of saprotrophic taxa, many of which are ascomycetes (Table S3,
Supplementary Information), was significantly higher in the N150
compared to the control and N50 treatments; estimates of the
Shannon diversity of saprotrophs and ascomycetes were also
significantly higher in the N150 treatment (Fig. 4B).

3.6. Community composition among treatments

The fungal community as a whole, as measured by ITS, was
significantly different among N addition treatments (Fig. 5A). The
ITS1 and ITS2 markers gave somewhat different results with ITS1
suggesting that total fungal community composition was signifi-
cantly different among all three treatments and ITS2 suggesting a
significant result only for the highest N level (N150). Loadings of
log-transformed OTU sequence abundance indicated that differ-
ences between the treatments were driven in part by ectomycor-
rhizal basidiomycetes, including Russula and Cortinarius, and
saprotrophic ascomycetes (Fig. S1, Supplementary Information).
When ascomycetes and basidiomycetes were plotted separately,
the basidiomycetes showed stronger separation across treatments
(Fig. 5B and C), with both N addition treatments separating from
the control, particularly for the ITS1 region. This result is likely
caused by a shift in composition of ectomycorrhizal basidiomycetes
(Fig. 5D). The saprotrophic component of the community exhibited
less clear separation with only the ITS2 locus detecting a separation
of the highest N treatment (N150) from the control and the N50
treatments (Fig. 5E).

An unweighted UniFrac analysis of the basidiomycete compo-
nent of the community, based on LSU data, suggests a significant
effect of N addition on basidiomycete community composition
(Fig. 5F), with different communities in all three levels of N fertil-
ization. The relative abundance of the ectomycorrhizal family Cor-
tinariaceae was significantly associated with the control treatment
(NO), while the ectomycorrhizal Russulaceae was associated with
the highest N treatment (N150).

4. Discussion

Here we demonstrate that more than twenty years of N addi-
tions have caused fundamental changes in the relative abundances,
diversity, and community composition of soil fungi in a temperate
hardwood forest. Long-term N enrichment caused a significant
decline in the relative abundance and diversity of ectomycorrhizal
taxa, which dominate the forest floor under ambient N deposition,
with a concomitant increase in the diversity of ascomycetes and the
relative abundance of several saprotrophic ascomycete taxa. We
discovered a nitrophilic species, R. vinacea, whose relative abun-
dance more than tripled under N fertilization. These results build
on previous work at our site showing that chronic N additions
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Fig. 4. Differences in (A) OTU richness and (B) Shannon diversity of fungi, ascomycetes, basidiomycetes, ectomycorrhizal fungi, and saprotrophic fungi across N treatments. Error
bars are standard errors. Richness estimates are averages of estimates calculated from ITS1 and ITS2. Letters indicate significant differences between treatments.

significantly reduce total fungal biomass (Frey et al., 2004, 2014)
and ligninolytic enzyme activity (Frey et al., 2004). Although there
have been numerous studies examining the effects of N deposition
on soil fungi, ours is the first to comprehensively describe the long-
term (>20 yr) effects of soil N enrichment on multiple levels of
fungal biodiversity (phylum, genus, OTU, functional groups, com-
munity-level).

Ectomycorrhizal responses were taxon specific, with N-enrich-
ment disfavoring Cortinarius species and most Russula species,
while significantly enhancing the relative abundance of R. vinacea.
The general decline in ectomycorrhizal taxa was unlikely associated
with reduced root biomass, as that was unaffected by N-enrich-
ment at our site (Frey et al.,, 2014). The observed increase in
R. vinacea abundance is consistent with work at the same experi-
mental plots showing that the proportion of ectomycorrhizal tree
roots colonized by R. vinacea doubles in response to N addition,
with this species colonizing about 70% of all root tips analyzed in
the highest N treatment (J. Sadowsky, unpubl. data). We have thus
identified R. vinacea as a nitrophilic species which positively re-
sponds to soil N enrichment and dominates the ectomycorrhizal
community following long-term N fertilization. This confirms
previous observations of Russula species as having the potential to
grow well in high N soils, although R. vinacea is not in the Russula
clade currently defined as nitrophilic (Avis, 2012). Russula species
are known to have variable responses to N, although it is unclear
why some species have nitrophilic tendencies while others decline
or are even unable to persist in N enriched environments (Avis
et al,, 2003; Lilleskov et al., 2011; Avis, 2012). One of the primary
roles of ectomycorrhizal fungi is to transport N to hosts in exchange
for plant C, and ectomycorrhizal fungi may be excluded from
symbiosis under conditions of high N availability as plants allocate
less photosynthate C to N acquisition structures (Wallenda and
Kottke, 1998). The increase in the relative abundance of R. vinacea
in response to N fertilization suggests that this species is either able
to maintain symbiosis by conferring benefits other than N acqui-
sition to its host (e.g., P acquisition), is a parasite, or is able to forage
for its own soil C resources. The responses of both the Russulaceae

and Cortinariaceae (Fig. 5F), combined with previous observations
that fungi in these families access different kinds of N resources
(Hobbie et al., 2013), identify these fungi as important targets for
future research.

Chronic N additions also led to significant changes in the
structure of the less abundant (non-mycorrhizal) component of the
community, including an increase in ascomycete diversity, the
abundance of several ascomycete genera (e.g., Trichophyton spp.,
Phialophora spp., Hypocrea spp., Rhizoscyphus spp.), and the number
and diversity of saprotrophic taxa, many (but not all) of which are
ascomycetes. Previous studies have shown that N enrichment
increased ascomycete richness in a temperate pine stand (Weber
et al, 2013) and increased ascomycete abundance in a spruce
boreal forest (Allison et al., 2007), suggesting that these trends are
consistent across forest types and ecosystems. The genera that
increased in abundance in our study have differing capacities for
decomposition of soil organic matter (Table 1), and shifts in their
abundance may represent shifts in dominant fungal species among
different groups of decomposers (Moorhead and Sinsabaugh,
2006). The increase in relative abundance of saprotrophic asco-
mycetes with soil N enrichment lends support to the hypothesis
that N additions may change the outcome of competition between
functional groups by favoring growth and competitive ability of
fast-growing, N-tolerant copiotrophs (Agren et al., 2001), taxa that
may have a lower capacity for efficient lignin degradation. This type
of mechanism has been proposed to operate in the structuring of
bacterial communities in N-enriched soils, with N enrichment fa-
voring copiotrophs and disfavoring oligotrophs that degrade rela-
tively recalcitrant organic matter (Fierer et al., 2012). However, it is
also possible that N-tolerant fungi come to dominate the commu-
nity simply because fungal taxa less able to withstand high N levels
decline.

Although our study was based at a particular site and in the
specific context of Harvard Forest's long-running Chronic Nitrogen
Amendment Study, commonalities with previously published work
are abundant, and point to generalities. These are: (1) most ecto-
mycorrhizal fungi decline in response to N enrichment, but there
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are nitrophilic taxa that come to dominate the ectomycorrhizal
community following long-term N additions; and (2) N additions
increase the diversity and abundance of those saprotrophic asco-
mycetes whose primary niche appears to be cellulose decomposi-
tion, over saprotrophs capable of degrading more recalcitrant C
compounds. These fungal responses to soil N fertilization are
associated with a suppression of organic matter decomposition
overall and a significant accumulation of soil C (Pregitzer et al.,
2008; Zak et al., 2008, 2011; Frey et al., 2014) that has a higher
relative abundance of lignin (Frey et al., 2014). In the aggregate,
fungal responses to N enrichment are likely to play a critical role in
altering soil nutrient cycling.
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